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Numerical solution of the transient natural convection flow of an incompressible viscous fluid past an
impulsively started semiinfinite isothermal vertical plate with mass diffusion is presented here, taking
into account a homogeneous chemical reaction of first order. The concentration profiles are com-
pared with the exact solution and are found to be in good agreement. It is observed that, owing to
the presence of the first-order chemical reaction, the velocity increases during generative reaction
and decreases in destructive reaction.

1. Introduction. Chemical reactions can be codified as either heterogeneous or homogeneous proc-
esses. This depends on whether they occur at an interface or as a single-phase volume reaction. In many
chemical engineering processes, a chemical reaction between a foreign mass and the fluid in which the plate
is moving occurs. These processes take place in numerous industrial applications, e.g., polymer production,
manufacturing of ceramics or glassware and food processing. Bourne and Dixon [1] analyzed the cooling of
fibers in the formation process.

Stokes [2] presented an exact solution to the Navier–Stokes equations which is the flow of a viscous
incompressible fluid past an impulsively started infinite horizontal plate in its own plane. Following Stokes
[2] analysis, Soundalgekar [3] was the first to present an exact solution to the flow of a viscous fluid past an
impulsively started infinite isothermal vertical plate with mass transfer. Muthukumaraswamy and Ganesan [4]
have analyzed the above problem numerically. Das et al. [5] have studied effects of a homogeneous first-
order chemical reaction on the flow past an impulsively started infinite vertical plate with constant heat flux
and mass transfer. The dimensionless governing equations were solved by the usual Laplace-transform tech-
nique. 

The present investigation, involving the simultaneous effects of heat and mass transfer, is concerned
with a numerical study of transient natural convection flow past an impulsively started semiinfinite vertical
plate which is subjected to uniform heat and diffusion of a chemically reactive species. The fluids considered
in this study are air and water. The governing equations are solved by an implicit finite-difference scheme of
Crank–Nicolson type. In order to check the accuracy of our numerical results, the present study is compared
with the available exact solution of Das et al. [5] at a lower time level, and they are found to be in good
agreement. 

2. The Basic Equation. Here the flow of a viscous incompressible fluid past an impulsively started
semiinfinite vertical plate with uniform heat and mass diffusion is considered. It is assumed that the effect of
viscous dissipation is negligible in the energy equation and there is a first-order chemical reaction between
the diffusing species and the fluid. The x-axis is taken along the semiinfinite plate in the vertically upward
direction and the y-axis is taken normal to the plate. Initially, it is assumed that the plate and the fluid are of
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the same temperature and concentration in a stationary condition. At time t′ > 0, the plate starts moving im-
pulsively in the vertical direction with constant velocity u0 against the gravitational field. The temperature
and the concentration level near the plate are raised uniformly. It is also assumed that there exists a homoge-
neous first-order chemical reaction between the fluid and species concentration. Then, under usual Boussinesq
approximation, the unsteady flow past the semiinfinite vertical plate is governed by the following equations:
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Eqs. (1)–(4) are reduced to the following nondimensional form:
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The corresponding initial and boundary conditions in nondimensional form are

t ≤ 0 :   U = 0 ,   V = 0 ,   T = 0 ,   C = 0 ,

t > 0 :   U = 1 ,   V = 0 ,   T = 1 ,   C = 1   at  Y = 0 ,

U = 0 ,   T = 0 ,   C = 0   at  X = 0 ,

U → 0 ,   T → 0 ,   C → 0   as  Y → ∞ .

(11)

3. Numerical Procedure. The unsteady, nonlinear coupled equations (7) to (10) with the condition
(11) are solved by employing an implicit finite-difference scheme of Crank–Nicolson type. The region of
integration is considered as a rectangle with sides Xmax = 1 and Ymax = 16, where Ymax corresponds to Y =
∞, which lies very well outside the momentum, energy, and concentration boundary layers. The maximum of
Y was chosen as 16 after some preliminary investigations so that the last two of the boundary conditions (11)
are satisfied with in the tolerance limit 10−5. After experimenting with a few sets of mesh sizes, the mesh
sizes have been fixed at the level ∆X = 0.05 and Y = 0.25 with time step ∆t = 0.01. The local truncation error
is O(∆t2 + ∆Y2 + ∆X2) and it tends to zero as ∆t, ∆X, and ∆Y tend to zero. Hence the scheme is compatible.
The finite-difference scheme is unconditionally stable, as discussed by Muthukumaraswamy and Ganesan [4].
Stability and compatibility ensures convergence.

 4. Results and Discussion. Representative numerical results for the uniform heat and mass diffusion
will be discussed in this section. In order to ascertain the accuracy of the numerical results, the present study
is compared with the available exact solution in the literature. The concentration profiles for K = 0.2, Sc =
0.7 and 0.9, Gr = 2, GrC = 5, and Pr = 0.71 (corresponding to η = Y ⁄ 2√ t ) are compared with the available
exact solution of Das et al. [5] at t = 0.2 in Fig. 1 and they are found to be in good agreement.

The mass diffusion equation (10) can be adjusted to meet these circumstances if one takes
(i) K > 0 for the destructive reaction and 
(ii) K < 0 for the generative reaction. 
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Fig. 1. Comparison of concentration profiles of the present work (solid
lines) with the exact solution of Das et al. (solid circles) for Gr = 2, GrC

= 5, Pr = 0.71, K = 0.2, and t = 0.2: 1) Sc = 0.7 and 2) 0.9.

Fig. 2. Transient velocity profiles at X = 1.0 for Gr = 2, GrC = 5, and Pr
= 0.72 (solid lines) and 7 (dashed line): 1) Sc = 0.16, K = 0.2, and t =
0.73; 2) 0.16, 0.2, and 4.1*; 3) 0.6, −2, and 0.79; 4) 0.6, −2, and 7.7*; 5)
0.6, 0.2, and 10.5*; 6) 0.6, 0.2, and 12.3*; 7) 0.16, 0.2, and 0.3; 8) 0.6,
−2, and 0.3; 9) 0.6, −2, and 0.13. The asterisk corresponds to steady
state.

Fig. 3. Steady state temperature profiles at X = 1.0 for Sc = 0.6 and Pr
= 0.71 and 7: 1) Gr = 2, GrC = 5, K = 0.2, and t = 10.5; 2) 2, 5, −2,
and 7.7; 3) 5, 5, 0.2, and 9.3; 4) 5, 10, 0.2, and 6.8; 5) 2, 5, 0.2, and
12.3.

Fig. 4. Transient concentration profiles at X = 1.0 for Gr = 2, GrC = 5,
and Pr = 0.71: 1) Sc = 0.6, K = −2, and t = 0.57; 2) 0.6, −2, and 7.7*;
3) 0.6 −1, and 8.4*; 4) 0.6, 0.2, and 10.5*; 6) 0.5, −2, and 0.08. The
asterisk corresponds to steady state.
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The transient velocity profiles for different chemical reaction parameter, Schmidt numbers, and
Prandtl number are shown in Fig. 2. The fluids considered in this study are air (Pr = 0.71) and water (Pr =
7.0). The velocity profiles presented are those at X = 1.0. It is observed that for Pr = 0.71, Gr = 2, GrC = 5,
Sc = 0.6 and K = −2.0, the velocity increases with time, reaches a temporal maximum around time t = 0.79,
and becomes steady at time t = 7.7. It is observed that the velocity increases during generative reaction and
decreases in destructive reaction. It is clear that the velocity increases with decreasing values of the Schmidt
number or chemical reaction parameter. The time taken to reach the steady-state increases with increasing
Schmidt number or chemical reaction parameter. However, the time required for the velocity to reach steady-
state depends upon both the Schmidt number and the chemical reaction parameter. This shows that the con-
tribution of mass diffusion to the buoyancy force increases the maximum velocity significantly. It is observed
that the velocity decreases with increasing the Prandtl number. 

The transient and steady-state temperature for different values of chemical reaction parameter, thermal
Grashof number, mass Grashof number and Prandtl number are shown in Fig. 3. It is observed that the tem-
perature increases with increasing values of the chemical reaction parameter, and decreasing values of the
Prandtl number. There is a fall in temperature due to an increasing thermal Grashof number or mass Grashof
number. Such a study found useful in identification of the best catalysts.

The effect of chemical reaction parameter and Schmidt number are very important in concentration
field. The transient and steady-state concentration profile for different chemical reation parameter are shown
in Fig. 4. There is a fall in concentration due to increasing values of the chemical reaction parameter. The
concentration profiles for different values of the thermal Grashof number and mass Grashof number are
shown in Fig. 5. It is observed that in the presence of a destructive reaction, the concentration increases with
decreasing thermal Grashof number or mass Grashof number. 

Knowing the concentration field, it is customary to study the rate of concentration in their transient
and steady-state conditions. The dimensionless local as well as average Sherwood number are given by the
following expressions: 

Shx = − X 

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

 Y=0

 , (12)

Fig. 5. Steady state concentration profiles at X = 1.0 for Pr = 0.71 and K
= 0.2: 1) Gr = 2, GrC = 5, and t = 10.5; 2) 5, 5, and 9.3; 3) 5, 10, and 6.8.
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The derivatives involved in Eqs. (12) and (13) are evaluated using five-point approximation formula
and then the integrals are evaluated using Newton–Cotes closed integration formula. 

The local Sherwood number for different chemical reaction parameters and Schmidt number is shown
in Fig. 6. The rate of mass transfer increases with increasing chemical reaction parameter or Sc. It is ob-
served that the rate of concentration increases during destructive reaction and decreases in generative reaction.
The effects of Sc and the chemical reaction parameter on the average values of the Sherwood number are
shown in Fig. 7. The average Sherwood number increases with increasing chemical reaction parameter or Sc.

Conclusions. A detailed numerical study has been carried out for the flow past an impulsively started
semiinfinite vertical plate with uniform heat and diffusion of chemically reactive species. The dimensionless
governing equations are solved numerically. The fluids considered in this study are air and water. This study
has been compared with the exact solution available in the literature, and they are found to be in good agree-
ment. It is observed that the velocity and concentration increase during generative reaction and decrease in
destructive reaction. It is found that the number of time steps to reach steady-state depends strongly on the
chemical reaction parameter. 

NOTATION

C′, concentration; C, dimensionless concentration; D, mass diffusion coefficient; g, acceleration due to
gravity; k, thermal conductivity; GrC, mass Grashof number; Gr, thermal Grashof number; K, dimensionless
chemical reaction parameter; Kl, chemical reaction parameter; Pr, Prandtl number; Sc, Schmidt number; Shx,
dimensionless local Sherwood number; Sh, dimensionless average Sherwood number; T′, temperature; T, di-
mensionless temperature; t′, dimensionless time; u0, velocity of the plate; u and v, velocity components in the
x and y directions, respectively; U and V, dimensionless velocity components in the X and Y directions, re-
spectively; x, spatial coordinate along the plate; X, dimensionless spatial coordinate along the plate; y, spatial
coordinate normal to the plate; Y, dimensionless spatial coordinate normal to the plate; α, thermal diffusivity;
β, volumetric coefficient of thermal expansion; β∗ , volumetric coefficient of expansion with concentration; µ,
dynamic viscosity; ν, kinematic viscosity. Subscripts: w, conditions on the wall; ∞, free stream conditions.

Fig. 6. Local Sherwood number for 1) GrC = 2, Gr = 5, and Pr = 0.71:
1) Sc = 0.6 and K = 0.2; 2) 0.6 and −1; 3) 0.6 and −2; 4) 0.16 and 0.2.

Fig. 7. Average Sherwood number. For notation, see Fig. 6.
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